行人檢測作為計算機視覺領(lǐng)域基本的主題之一,多年來被廣泛研究。盡管先進的行人檢測器已在無遮擋行人上取得了超過 90% 的準確率,但在嚴重遮擋行人檢測上依然無法達到滿意的效果。究其根源,主要存在以下兩個難點:
嚴重遮擋的行人框大部分為背景,檢測器難以將其與背景類別區(qū)分;
給定一個遮擋行人框,檢測器無法得到可見區(qū)域的信息;
Tube Feature Aggregation Network(TFAN)新方法,即利用時序信息來輔助當前幀的遮擋行人檢測,目前該方法已在 Caltech 和 NightOwls 兩個數(shù)據(jù)集取得了業(yè)界領(lǐng)先的準確率。
核心思路
利用時序信息輔助當前幀遮擋行人檢測
目前大部分行人檢測工作都集中于靜態(tài)圖像檢測,但在實際車路環(huán)境中大部分目標都處于運動狀態(tài)。針對嚴重遮擋行人的復雜場景,單幀圖像難以提供足夠有效的信息。為了優(yōu)化遮擋場景下行人的識別,地平線團隊提出通過相鄰幀尋找無遮擋或少遮擋目標,對當前圖像中的遮擋行人識別進行輔助檢測。
實驗新方法
Proposal tube 解決嚴重遮擋行人檢測
如下圖,給定一個視頻序列,先對每幀圖像提取特征并使用 RPN(Region Proposal Network)網(wǎng)絡生成 proposal 框。從當前幀的某個 proposal 框出發(fā),依次在相鄰幀的空間鄰域內(nèi)尋找相似的proposal框并連接成 proposal tube。
![]() |
商用機器人 Disinfection Robot 展廳機器人 智能垃圾站 輪式機器人底盤 迎賓機器人 移動機器人底盤 講解機器人 紫外線消毒機器人 大屏機器人 霧化消毒機器人 服務機器人底盤 智能送餐機器人 霧化消毒機 機器人OEM代工廠 消毒機器人排名 智能配送機器人 圖書館機器人 導引機器人 移動消毒機器人 導診機器人 迎賓接待機器人 前臺機器人 導覽機器人 酒店送物機器人 云跡科技潤機器人 云跡酒店機器人 智能導診機器人 |