国产精品tv在线观看,伊人无码高清,爱爱打泡影院,91精品午夜小视频在线观看性色,日本三级黄色网站,国产天堂av手机在线,一级A毛片免费观看

創(chuàng)澤機器人
CHUANGZE ROBOT
當前位置:首頁 > 新聞資訊 > 人工智能應用 > 煉化裝置大機組智能故障診斷-為 20 家企業(yè)有效診斷 50 余次

煉化裝置大機組智能故障診斷-為 20 家企業(yè)有效診斷 50 余次

來源:中央企業(yè)人工智能協(xié)同創(chuàng)新平臺     編輯:創(chuàng)澤   時間:2025/1/6   主題:其他 [加盟]

中石化各煉化企業(yè)大機組監(jiān)測系統(tǒng)分散不統(tǒng)一,未與工藝量參數(shù)以及業(yè)務(wù)系統(tǒng)實現(xiàn)關(guān)聯(lián),關(guān)鍵機組各狀態(tài)監(jiān)測系統(tǒng)成為信息孤島,難以實現(xiàn)統(tǒng)籌管理。在應用上缺乏早期預警和故障診斷能力, 多采用門限報警技術(shù),存在反復報警、漏報警、假報警現(xiàn)象較多,故障診斷依賴專業(yè)工程師的技術(shù)能力,缺少數(shù)據(jù)挖掘,數(shù)據(jù)分析不足,智能預警和智能診斷能力不足,對關(guān)鍵大機組維修決策支持能力弱。

為解決以上痛點問題,中石化建立了基于石化智云平臺關(guān)鍵機組狀態(tài)監(jiān)控應用,主要建設(shè)內(nèi)容如下:

本項目基于石化智云基礎(chǔ)架構(gòu),利用云資源、技術(shù)服務(wù)、持續(xù)交付中心等云技術(shù)及能力,開發(fā)了關(guān)鍵機組狀態(tài)監(jiān)控應用,包括 5 個一級功能和 34 個二級功能模塊,構(gòu)建了報警通知-診斷通知-檢修反饋閉環(huán)業(yè)務(wù)處理流程。

項目依托石化智云構(gòu)建大機組故障診斷模型等共 7 個組件并上架石化智云,賦能石化智云。

本項目將采集到的大機組振動和工藝數(shù)據(jù)進行預處理后,建立預警模型,輸出預警信息,預警模型分為 5 種模式:常規(guī)報警、防止反復穿越報警、趨勢預警、智能快變報警、智能動態(tài)閾值預警。

本項目研發(fā)構(gòu)建了包括旋轉(zhuǎn)失速、喘振、軸瓦間隙、轉(zhuǎn)子彎曲等 9 個大機組故障診斷模型。

本項目覆蓋了中石化煉化企業(yè) 20 家關(guān)鍵大機組數(shù)據(jù),共接入 490 臺機組振動數(shù)據(jù)和工藝量數(shù)據(jù)。同時,對大機組故障診斷模型組件進行國產(chǎn)化適配改造,并上云上平臺。

大機組故障診斷模型是針對離心壓縮機組,采用基于數(shù)據(jù)驅(qū)動和故障機理相結(jié)合的方式,通過分析故障機理,結(jié)合信號處理方法,提取出高信噪比的振動參數(shù)故障特征。

通過對歷史案例數(shù)據(jù)的總結(jié),形成各類故障的故障特征庫,采用自編碼器 Autoencoder、卷積神經(jīng)網(wǎng)絡(luò) CNN等數(shù)據(jù)驅(qū)動方法,對新采集的機組振動特征參數(shù)進行分類,建立智能診斷模型,實現(xiàn)大機組不平衡、不對中、油膜渦動等 9 類典型故障智能診斷。

1)特征提取研究

a)時域特征提取。時域信號是傳感器采集經(jīng)數(shù)據(jù)采集器后的原始振動信號,當設(shè)備發(fā)生故障時,振動數(shù)據(jù)的成分會發(fā)生變化,但大都被干擾信息遮蔽,無法直接識別。利用統(tǒng)計方法提取的振動信號時域特征,一定程度上可以減少振動數(shù)據(jù)中的噪聲干擾,減少數(shù)據(jù)的冗余信息,并且特征對故障具有一定的指示性。

振動數(shù)據(jù)統(tǒng)計特征分為有量綱參數(shù)和無量綱參數(shù)。有量綱參數(shù):峰值、峰峰值、均值、有效值、方差等,無量綱的有:峭度、歪度、波形、脈沖、裕度等指標。上述指標對故障信號均有不同的響應,有量綱參數(shù)對設(shè)備工況、載荷變化非常敏感,無量綱參數(shù)會隨設(shè)備故障嚴重程度發(fā)生變化。單一特征不能實現(xiàn)變工況運行設(shè)備故障的有效預警,多特征融合可以解決單一故障特征故障指示面窄的問題。振動信號的時域特征常用于設(shè)備的運行狀態(tài)監(jiān)測,對于工況變化復雜的設(shè)備,單一的時域特征參數(shù)無法全面監(jiān)測設(shè)備運行狀態(tài),易造成大量的虛警和漏警,還需要頻域特征。

b)頻域特征提取。振動信號頻譜分析是故障診斷最常用的手段,頻譜分析能夠得到振動數(shù)據(jù)組成成分及其能量大小。傅里葉變換是振動信號頻譜分析的基礎(chǔ),通過傅里葉變換將振動信號分解為單一頻率成分,可以清晰地看出信號中的主要組成成分,并得出故障特征。

c)時頻特征提取;诟道锶~變換的頻譜分析只能處理平穩(wěn)信號,無法處理非平穩(wěn)信號。小波分析引入窗函數(shù)可變的小波基,其分析窗口函數(shù)可調(diào),能夠提取到非平穩(wěn)信號短時、局部信息特征。通過構(gòu)造小波函數(shù)族,將小波分析過程中的小波正交基組擴展為小波正交基庫,實現(xiàn)數(shù)據(jù)低頻和高頻成分的同時細化和分解。

通過試驗數(shù)據(jù)對時域、頻域和時頻域特征分析,可以發(fā)現(xiàn),不同特征對故障敏感程度不同,反映了設(shè)備不同狀態(tài)下振動數(shù)據(jù)特征間的差異。部分時域特征對軸承故障不敏感,但單一狀態(tài)下特征穩(wěn)定性較好;頻域特征對頻譜結(jié)構(gòu)變化敏感,正常狀態(tài)下,特征變化穩(wěn)定,未出現(xiàn)大幅波動,指示性好;時頻域特征能夠細化頻譜結(jié)構(gòu),對頻譜異常變化敏感,且故障指示性最好。

2)基于自編碼器的故障智能診斷

a)自編碼器作為診斷模型原理。自編碼作為一種無監(jiān)督式學習模型,利用輸入數(shù)據(jù) X 本身作為監(jiān)督,來指導神經(jīng)網(wǎng)絡(luò)嘗試學習一個映射關(guān)系,從而得到一個重構(gòu)輸出。算法模型包含兩個主要的部分:Encoder(編碼器)和 Decoder(解碼器)。編碼器的作用是把高維輸入 X 編碼成低維的隱變量 h 從而強迫神經(jīng)網(wǎng)絡(luò)學習最有信息量的特征;解碼器的作用是把隱藏層的隱變量 h 還原到初始維度。

在故障檢測場景下。利用無故障特征數(shù)據(jù)與各類故障特征數(shù)據(jù),構(gòu)建深度自編碼器網(wǎng)絡(luò)診斷模型 AE,并得到正常與故障樣本特征空間;然后將當前待檢數(shù)據(jù)輸入 AE 的編碼器部分,得到待檢數(shù)據(jù)的特征 at,計算輸出值 at 與各特征空間A 之間距離,距離最近的判定為待檢數(shù)據(jù)所在工況。

b)診斷模型分類方法。診斷模型采用以下兩種距離歐式距離和馬氏距離對 AE 模型輸出進行分類:

歐氏距離簡單明了,且不受坐標旋轉(zhuǎn)、平移的影響。為避免坐標尺度對分類結(jié)果的影響,需在計算歐氏距離之前先對特征參數(shù)進行歸一化處理?紤]到特征矢量中的諸分量對分類所起到的作用不同,可采用加權(quán)方法,構(gòu)造加權(quán)歐式距離。

馬氏距離是加權(quán)歐式距離中用得較多的一種,馬氏距離的優(yōu)點是排除了特征參數(shù)之間的相互影響。

3)基于卷積神經(jīng)網(wǎng)絡(luò)的故障智能診斷

a)卷積神經(jīng)網(wǎng)絡(luò)作為診斷模型原理。卷積神經(jīng)網(wǎng)絡(luò)是多級神經(jīng)網(wǎng)絡(luò),包含濾波級(filtering stage)與分類級(classification stage)。其中,濾波級用來提取輸入信號的特征,分類級對學習到的特征進行分類,兩級網(wǎng)絡(luò)參數(shù)是 共同訓練得到的。濾波級包含卷積層(convolutional layers),池化層(pooling layers)與激活層 (activation layers)等 3 個基本單元,而分類級一般由全連接層組成。本方案設(shè)計的卷積神經(jīng)網(wǎng)絡(luò)處理的是一維信號。

b)用于振動信號診斷的一維卷積神經(jīng)網(wǎng)絡(luò)。本項目采用的卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)如下圖所示。該卷網(wǎng)包含兩個卷積層,兩個池化層,一個全連接隱含層,以及一個 Softmax 層。診斷信號通過第一個卷積層以及 ReLU 激活層,變?yōu)橐唤M特征圖(Feature Maps),再經(jīng)過最大值池化進行降采樣。重復一次以上操作,將最后一個池化層的特征圖與全連接隱含層相連,經(jīng)過 ReLU 激活之后,傳遞到最后的 softmax 層。

大機組故障診斷模型目前在中石化集團 20 家煉化企業(yè)離心大機組進行應用,實現(xiàn)了大機組不平衡、不對中、 油膜渦動、、喘振/旋轉(zhuǎn)失速、動靜摩擦等 9 類典型故障自動診斷,為企業(yè)維修決策提供有力支持。

自系統(tǒng)上線以來至今應用效果顯著,基于系統(tǒng)智能報警和智能診斷模型已為 20 家企業(yè)有效診斷 50 余次,統(tǒng)計結(jié)果見圖 5,其中有 49 次為提前發(fā)現(xiàn)機組異常,及時告知企業(yè),密切關(guān)注機組,避免造成嚴重故障。

本模型通過推廣至煉化板塊其他企業(yè)離心大機組故障診斷,可避免或減少非計劃停機或停工事件發(fā)生,延長設(shè)備壽命,同時減少維修時間,提高生產(chǎn)效率和經(jīng)濟效益。

大機組智能診斷模型可大幅度減少對故障診斷專家的依賴,并且確認診斷結(jié)論以及檢維修建議的時間縮短 6 倍以上,可大幅縮短機組的檢修周期,降低機組故障停機時間、提高企業(yè)經(jīng)濟效益。

根據(jù)應用企業(yè)數(shù)據(jù)反饋:預計一家企業(yè)每年降低非計劃停機 1-2 次,根據(jù)企業(yè)規(guī)模不同,為企業(yè)減少直接或 間接經(jīng)濟損失約每年 400 萬,為企業(yè)降本增效和可持續(xù)發(fā)展提供有力的技術(shù)支撐。





“大瓦特+智搜”人力小智智能問答助手應用,提高人資制度知識查詢效率

通過識別員工意圖自動解析并檢索公司內(nèi)部的規(guī)章制度、政策文件和業(yè)務(wù)流程等相關(guān)信息,自動高效提供最匹配的答案,從而提高人資制度知識查詢效率,并確保人資領(lǐng)域政策信息的準確傳達

生產(chǎn)現(xiàn)場違章作業(yè)智能監(jiān)控場景,建設(shè)“1234”總體框架

基于公司大瓦特生態(tài)技術(shù)體系,推動安全監(jiān)管模式再變革 1 大核心愿景,細化 2 大核心目標,依托大瓦特 L0 電力基礎(chǔ)大模型、電網(wǎng)首個人工智能樣本標注基地、“數(shù)字安全監(jiān)盤人”功能領(lǐng)先為 3 大核心基礎(chǔ),

中美AIGC產(chǎn)業(yè)商業(yè)化落地生態(tài)與發(fā)展趨勢分析報告:AIGC技術(shù)在金融、信息技術(shù)、醫(yī)療等行業(yè)落地進展迅速

部分場景和領(lǐng)域(金融、信息技術(shù)、醫(yī)療等行業(yè))已實現(xiàn)實質(zhì)性的商業(yè)化進展,而其他領(lǐng)域則仍處于探索階段,在數(shù)個行業(yè)與應用場景的交叉領(lǐng)域展現(xiàn)出巨大的市場潛力

2024年企業(yè)AI大模型應用落地白皮書-應用現(xiàn)狀和未來趨勢,擁抱AI大模型,擁抱AI大模型

揭開了AI大模型在企業(yè)中的應用現(xiàn)狀和未來趨勢,實時監(jiān)控生產(chǎn)線,AI大模型能夠預測設(shè)備故障,減少停機時間,確定AI大模型的應用領(lǐng)域、投資預算、技術(shù)選型等

2024年AI大模型賦能智能座艙研究報告-從機械式座艙到電子式座艙再到智能化座艙

智能座艙的發(fā)展經(jīng)歷了從機械式座艙到電子式座艙,再到智能化座艙的演變;提供出行過程中的辦公、娛樂、社交、休息場景,并實現(xiàn)多場景轉(zhuǎn)變

Graph AI:大模型浪潮下的圖計算白皮書(2024年),交互現(xiàn)狀,面臨的問題與挑戰(zhàn),關(guān)鍵技術(shù)以及成功實踐

白皮書旨在全面解析圖計算與人工智能(尤其是大模型技術(shù))的交互現(xiàn)狀,探討其背后的原理,面臨的問題與挑戰(zhàn),關(guān)鍵技術(shù)以及成功實踐,為相關(guān)領(lǐng)域的研究和應用提供有益的參考和啟示

2024年AI大模型對我國勞動力市場潛在影響研究報告,碩博學歷的占比為 35.8%,3-5 年經(jīng)驗的占比 33.8%

大模型相關(guān)崗位對求職者的學歷和經(jīng)驗要求均較高,求碩博學歷的占比為 35.8%,比去年同期提高 5.5 個百分點;經(jīng)驗方面要求 3-5 年經(jīng)驗的占比 33.8%,比去年同期提高 2 個百分點

2024年中國人工智能系列白皮書-元宇宙技術(shù),趨勢包括新信息形態(tài),新數(shù)字器官,新經(jīng)濟模式,新社會圖景

元宇宙的關(guān)鍵支撐技術(shù)包括計算、感知、生成、協(xié)同和交互;帶動了工業(yè)、商業(yè)、服務(wù)、娛樂等面 向消費領(lǐng)域的創(chuàng)新和應用熱潮,在不同行業(yè)典型場景中深入應用并持續(xù) 創(chuàng)新和快速發(fā)展

2024年中國人工智能系列白皮書-體育人工智能,探索研究體育 人工智能的理論、技術(shù)和應用提供借鑒與參考

白皮書將梳理體育人工智能發(fā)展歷程以及應用于體育各個領(lǐng)域的人工智能關(guān)鍵技術(shù),以期為體育科技工作者進一步探索研究體育 人工智能的理論、技術(shù)和應用提供借鑒與參考

2024年AI智能交互眼鏡產(chǎn)業(yè)洞察報告:行業(yè)背景,行業(yè)現(xiàn)狀,典型企業(yè)和發(fā)展趨勢

報告從行業(yè)背景、行業(yè)現(xiàn)狀、典型企業(yè)分析順次深入,全面客觀地完成了AI智能交互眼 鏡行業(yè)整體情況的梳理總結(jié),AI智能交互眼鏡行業(yè)呈現(xiàn)蓄勢待發(fā)的發(fā)展趨勢

AI 搜索:大模型商業(yè)落地“第一束光”,更準確地理解搜索問題的意圖,延伸出主動回答

AI 搜索有望成為首個商業(yè)化落地的 C 端超級應用,能更精準地把握用戶的查詢意圖,并據(jù)此提供更加定制化的搜索結(jié)果,延伸出主動回答、主動思考其他相關(guān)因素

2024年度AI十大趨勢報告重磅發(fā)布!從技術(shù)、產(chǎn)品、行業(yè)等多維度勾勒AI現(xiàn)狀

大模型的創(chuàng)新速度在過去一年中增長了200%;AI的推理能力將提升300%;全球AGI領(lǐng)域的研究投入在過去三年內(nèi)增長了250%;未來的焦點將集中在20個賽道和5大場景
資料獲取
人工智能應用
== 最新資訊 ==
煉化裝置大機組智能故障診斷-為 20 家
“大瓦特+智搜”人力小智智能問答助手應用
生產(chǎn)現(xiàn)場違章作業(yè)智能監(jiān)控場景,建設(shè)“12
機器人的觸感靈巧手Linker Hand
中美AIGC產(chǎn)業(yè)商業(yè)化落地生態(tài)與發(fā)展趨勢
2024年AI大模型技術(shù)變遷情況回溯:技
智能迎賓機器人關(guān)鍵技術(shù):運控算法
仿人形機器人產(chǎn)業(yè)鏈空間廣闊,未來或達到萬
2024具身智能科技前沿熱點:智能靈巧操
2024年企業(yè)AI大模型應用落地白皮書-
2024年AI大模型賦能智能座艙研究報告
Graph AI:大模型浪潮下的圖計算白
2024年AI大模型對我國勞動力市場潛在
2024年中國人工智能系列白皮書-元宇宙
2024年中國人工智能系列白皮書-體育人
== 機器人推薦 ==
迎賓講解服務(wù)機器人

服務(wù)機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人開發(fā)平臺

機器人開發(fā)平臺


機器人底盤 Disinfection Robot 消毒機器人  講解機器人  迎賓機器人  移動機器人底盤  商用機器人  智能垃圾站  智能服務(wù)機器人  大屏機器人  霧化消毒機器人  紫外線消毒機器人  消毒機器人價格  展廳機器人  服務(wù)機器人底盤  核酸采樣機器人  智能配送機器人  導覽機器人 
版權(quán)所有 創(chuàng)澤智能機器人集團股份有限公司 中國運營中心:北京 清華科技園九號樓5層 中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088 銷售2:4006-937-088 客服電話: 4008-128-728